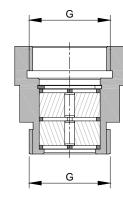
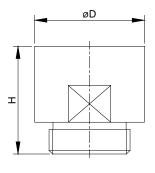
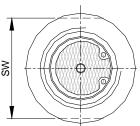
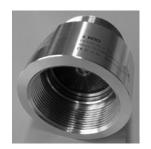
Typenblatt


Deflagrationsrohrsicherung bi-direktional **KITO**[®] **FS-Def0-IIC-...**"




Verwendung


Einbau in Rohrleitungen als Deflagrationsrohrsicherung z. B. zur Absicherung von Meßgasleitungen. Einsetzbar für alle Stoffe der Explosionsgruppen IIA1 bis IIC mit einer Normspaltweite (MESG) < 0,5 mm. Beidseitig wirkend, für einen maximalen Betriebsdruck von 1,1 bar abs. und einer maximalen Betriebstemperatur von 60 °C. Der Abstand von der Zündquelle bis zur Armatur darf eine Länge von 50 x Rohrinnendurchmesser nicht überschreiten.

Abmessungen (mm)

Gewinde	D	Н	SW	kg
G 1⁄2"	30	44	24	0,15
G ¾"	35	46	30	0,2
G 1"	45	44	41	0,3
G 1 ¼"	55	65	55	0,5
G 1 ½"	60	65	55	0,6
G 2"	75	65	70	0,9

Gewichtsangaben gelten nur für die Standard-Ausführung

Bestellbeispiel

KITO® FS-Def0-IIC-1"

(Ausführung mit Gewindeanschluss G 1")

Baumusterprüfung nach EN ISO 16852 und C€-Kennzeichnung nach ATEX-Richtlinie 2014/34/EU

Seite 1 von 2

KITO Armaturen GmbH Grotrian-Steinweg-Str. 1c 38112 Braunschweig USt.-Id.-Nr. DE812887561 +49 (0) 531 23000-0

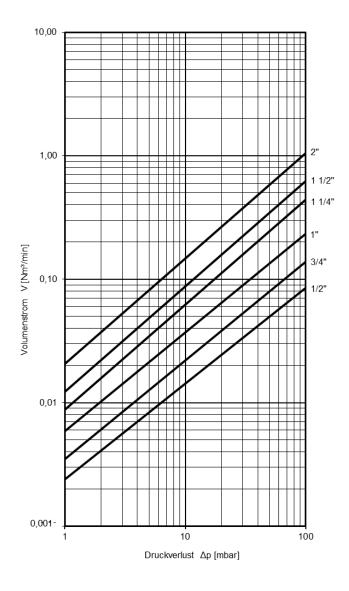
info@kito.de

+49 (0) 531 23000-10 www.kito.de H 46.1 N

Datum: 05-2018
Erstellt: Abt. Doku KITO
Änderungen vorbehalten

Typenblatt

Deflagrationsrohrsicherung bi-direktional KITO® FS-Def0-IIC-..."


Ausführung

	Standard	wahlweise
Gehäuse	Edelstahl 1.4571	
KITO®-Rost	Edelstahl 1.4571	
Zwischenlage	Edelstahl 1.4571	
Sicherungsblech	Edelstahl	
Anschlüsse	Außen- und Innengewinde	

Leistungsdiagramm

Der Volumenstrom V ist auf die Dichte von Luft mit ρ = 1,29 kg/m³ bei T = 273 K und einem Druck von p = 1.013 mbar bezogen. Für Medien anderer Dichte kann der Gasstrom ausreichend genau mit einer einfachen Näherungsgleichung bestimmt werden:

$$\dot{V} \ = \dot{V}_b \cdot \sqrt{\frac{\rho_b}{1,29}} \qquad \text{bzw} \, . \qquad \dot{V}_b = \dot{V} \ \cdot \sqrt{\frac{1,29}{\rho_b}}$$

Seite 2 von 2

info@kito.de

 \bowtie