
Typenblatt Unterdruckventil KITO® VS/o-...

Verwendung

als Endarmatur, für Atmungsöffnungen an Tankanlagen zur Belüftung und zur Verhinderung von unzulässigem Unterdruck. Aufbau auf Tankdach, gegebenenfalls in Verbindung mit einem Überdruckventil an einem gemeinsamen Rohrstutzen. Nicht explosionssicher, daher nicht anwendbar für brennbare Lagermedien.

Abmessungen (mm) und Einstelldrücke (mbar)

DN								Einstelldruck	
DIN	ASME	C1	D1	Н1	H2	~kg	min max. (Belastungs- gewicht PE)	min max.	min max. (mit Gehäuse- verlängerung)
50 PN 16	2"	120	170	206	108	10	1,8 - 7,3	7,4 - 130	> 130 - 200
80 PN 16	3"	144	200	232	131	13	1,8 - 7,7	7,8 - 115	> 115 - 200
100 PN 16	4"	180	260	262	152	21	1,8 - 7,7	7,8 - 155	> 155 - 200
125 PN 16	5"	195	285	296	173	26	1,9 - 6,8	6,9 - 130	> 130 - 150
150 PN 16	6"	220	320	337	200	33	1,8 - 11,9	12 - 150	-
200 PN 10	8"	255	380	404	232	55	2 - 11,9	12 - 100	-
250 PN 10	10"	300	430	459	248	72	2,2 - 11,9	12 - 100	-
300 PN 10	12"	345	520	535	296	125	2,5 - 15,2	15,3 - 100	-
350 PN 10	14"	390	612	605	348	166	2,5 - 15,2	15,3 - 50	-
400 PN 10	16"	450	685	706	386	216	2,5 - 15,2	15,3 - 50	-

Gewichtsangaben enthalten kein Belastungsgewicht und gelten nur für die Standard-Ausführung. Höhere Einstellungen siehe KITO® VS/o-1-... (Typenblatt D 12.1 N)

Bestellbeispiel

KITO® VS/o-2"

(Ausführung mit Flanschanschluss 2" ASME B16.5 Class 150 RF)

ohne Baumusterprüfung und C € -Kennzeichnung

Seite 1 von 2

D 12 N

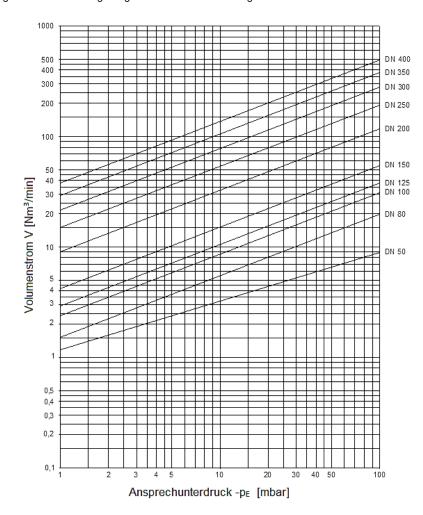
Datum: 05-2018

Erstellt: Abt. Doku KITO

Änderungen vorbehalten

Typenblatt Unterdruckventil KITO® VS/o-...

Ausführung


	Standard	wahlweise			
Gehäuse / Deckel	Stahl	Edelstahl 1.4571			
Gehäusedichtung	HD 3822	PTFE			
Ventilsitz, Ventilspindel	Edelstahl 1.4571				
Belastungsgewicht	Edelstahl 1.4571	PE			
Ventiltellerdichtung	Perbunan	Viton, PTFE, EPDM, metallisch			
-	≥ 100 mbar nur PTFE oder metallisch				
Flanschanschluss	EN 1092-1 Form A	ASME B16.5 Class 150 RF			

Leistungsdiagramm

Der Volumenstrom V ist auf die Dichte von Luft mit ρ = 1,29 kg/m³ bei T = 273 K und einem Druck von p = 1.013 mbar bezogen. Für andere Dichten errechnet sich der Volumenstrom aus

$$\overset{.}{V}_{40\%} \, = \overset{.}{V}_b \cdot \sqrt{\tfrac{\rho_b}{1,29}} \qquad \quad bzw. \quad \overset{.}{V}_b \, = \overset{.}{V}_{40\%} \cdot \sqrt{\tfrac{1,29}{\rho_b}}$$

Die Volumenströme ergeben sich bei Drucksteigerungen von 40 % über die Einstelldrücke hinaus (siehe DIN 4119). Volumenstrom Angaben bei Drucksteigerungen kleiner 40% auf Anfrage.

Seite 2 von 2

info@kito.de