
Typenblatt Über- und Unterdruckventil KITO® VD/o-...

Verwendung

Endarmatur, als Be- und Entlüftungseinrichtung, vorwiegend für Behälter zur Lagerung von nicht brennbaren Flüssigkeiten. Zur Verhinderung von unzulässigem Über- oder Unterdruck sowie Vergasungsverlusten bzw. unzulässigen Emissionen. Nicht explosions- und dauerbrandsicher.

Abmessungen (mm) und Einstelldrücke (mbar)

DN			н			Vacuum	Einstelldruck Druck	
DIN	ASME	D	DIN	ASME	kg	min max.	min max.	min max. (mit Gehäuse- verlängerung)
50 PN 16	2"	220	386	405	11	3 -100	10 – 100	> 100 - 200
80 PN 16	3"	260	412	432	15		12 - 70	> 70 - 200
100 PN 16	4"		413	438	18		10 - 60	> 60 - 200
125 PN 16	5"	380 450	435	499	22	3 - 50	15 - 75	> 75 - 150
150 PN 16	6"		445	537	31			
200 PN 10	8"		553	595			15 - 55	> 55 - 200
250 PN 10	10"	600	600	635	88		15 - 80	> 80 - 200

Gewichtsangaben enthalten kein Belastungsgewicht und gelten nur für die Standard-Ausführung. Höhere Einstellungen siehe KITO® VD/o-1-... (Typenblatt E 17.1 N)

Bestellbeispiel

KITO® VD/o-50

(Ausführung mit Flanschanschluss DN 50 PN 16)

ohne Baumusterprüfung und C € -Kennzeichnung

Seite 1 von 2

KITO Armaturen GmbH Grotrian-Steinweg-Str. 1c 38112 Braunschweig

USt.-Id.-Nr. DE812887561

+49 (0) 531 23000-0 +49 (0) 531 23000-10

www.kito.de

E 17 NDatum: 07-2022

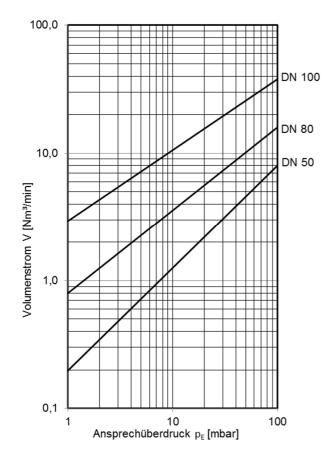
Datum: 07-2022

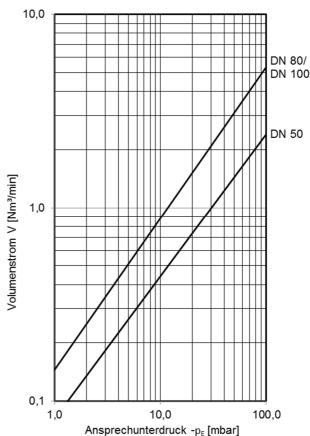
Erstellt: Abt. Doku KITO

Änderungen vorbehalten

Typenblatt Über- und Unterdruckventil KITO® VD/o-...

Ausführung


	Standard	wahlweise			
Gehäuse	Stahl	Edelstahl 1.4571			
Ventilsitz, Ventilspindel	Edelstahl 1.4571				
Belastungsgewicht	Edelstahl 1.4571				
Ventiltellerdichtung	Perbunan	Viton, PTFE, EPDM			
-	≥ 100 mbar nur PTFE oder metallisch (Überdruckteller)				
Vacuumventilteller	federbelastet				
Überdruckventilteller	gewichtsbelastet				
Abdeckhaube	Edelstahl				
Fremdkörperschutzsieb	Polyamid 6, ab DN 125 Edelstahl 1.4301	ab DN 125 Edelstahl 1.4571			
Flanschanschluss	EN 1092-1 Form B1	ASME B16.5 Class 150 RF			


Leistungsdiagramm

Der Volumenstrom V ist auf die Dichte von Luft mit ρ = 1,29 kg/m³ bei T = 273 K und einem Druck von p = 1.013 mbar bezogen. Für Medien anderer Dichte kann der Gasstrom ausreichend genau mit einer einfachen Näherungsgleichung bestimmt werden:

$$\dot{V}_{40\%} = \dot{V}_b \cdot \sqrt{\frac{\rho_b}{1,29}} \qquad \quad bzw. \quad \dot{V}_b = \dot{V}_{40\%} \cdot \sqrt{\frac{1,29}{\rho_b}}$$

Die Volumenströme ergeben sich bei Drucksteigerungen von 40 % über die Einstelldrücke hinaus (siehe DIN 4119). Volumenstrom Angaben bei Drucksteigerungen kleiner 40% auf Anfrage.

Seite 2 von 2